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For many years there has been debate regarding why shock wave reflection off a
solid surface has allowed regular reflection to persist beyond the incidence angles
where it becomes theoretically impossible. Theory predicts that at some limiting angle
the reflection point will move away from the wall and Mach reflection will occur.
Previous studies have suggested that the paradox could be due to the presence of the
growing viscous boundary layer immediately behind the point of reflection, and some
numerical studies support this view. This paper takes the approach of establishing
an experimental facility in which the theoretical assumptions regarding the surface of
reflection are met, i.e. that the reflecting surface is perfectly smooth, perfectly rigid,
and adiabatic. This is done by constructing a bifurcated shock tube facility in which
a shock wave is split into two plane waves that are then allowed to reflect off each
other at the trailing edge of wedge. The plane of symmetry between the waves then
acts as the perfect reflection surface.

Through a careful set of visualization experiments, and the use of multivariate
analysis to take account of the uncertainty in shock Mach number, triple-point
trajectory angle, and slightly different shock wave arrival times at the trailing edge,
the current work shows that the transition from one type of reflection to the other
does indeed occur at the theoretical value. Conventional tests of reflection off a solid
wall show significantly different transition results. Furthermore, it is also shown that
the thermal boundary layer plays an important role in this regard. It is thus confirmed
that viscous and thermal effects are the reason for the paradox. Reasons are also
suggested for the counter-intuitive behaviour of the reflected shock wave angle.

1. Introduction
The transition of shock wave reflection geometry from a regular to a Mach

reflection pattern was first described analytically by von Neumann (1943) and has
been the subject of significant research ever since. In regular reflection the incident
shock wave (I) and the reflected shock wave (R) meet at the surface of reflection at
a point known as the reflection point, as shown in figure 1(a). Depending on (Ms, γ,
θw) space, where Ms, γ and θw are the incident shock wave Mach number, gas specific
heat ratio and flow deflection angle respectively, ten different reflection geometries
have been observed, see Ben-Dor (1992). Holding Ms constant and reducing the flow
deflection angle (θw), regular reflection transitions into a geometry known as single
Mach reflection (henceforth referred to as Mach reflection). This transition results in
significantly different pressure ratios behind the shock wave, which has implications
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Figure 1. Shock wave reflection geometries. (a) Regular reflection. (b) Mach reflection.

for aerodynamic and blast loading calculations. Figure 1(b) illustrates the Mach
reflection geometry where the reflection point has detached from the surface and an
additional shock wave, known as the Mach stem (M), now connects the incident
and reflected shock waves to the surface. The intersection of the three shock waves
is known as the triple point and the angle between the triple-point trajectory and
the surface is known as the triple-point trajectory angle (χ). The slipstream (S) is a
thermodynamic contact discontinuity which separates the gas that has passed through
the incident and reflected shock waves from the gas that has passed through the Mach
stem.

The basic equations that describe regular and Mach reflection, known as two-
and three-shock theory respectively, were formulated by von Neumann (1943). The
analysis applied the oblique shock wave equations to the regions in close proximity to
the reflection or triple point, with relevant geometrical and boundary conditions. In
the case of pseudo-steady flow a Galilean velocity transform is performed to make the
reflection or triple point stationary. Thus the equations are strictly true only for the
fluid streamline passing through the reflection or triple point. The basic assumptions
of the theory are: that the fluid is inviscid, that all the waves are infinitely thin and
plane (and separate areas of uniform fluid) and that in the case of pseudo-steady
flow the geometry is self-similar and thus can be treated as steady using a Galilean
velocity transform. Additionally the three-shock theory assumes that the triple-point
trajectory is straight and emanates from the leading edge of the reflecting wedge.

Three transition criteria were proposed by von Neumann (1943) and are known as
the sonic, detachment and mechanical equilibrium criteria. The detachment criterion
predicts that transition occurs when the maximum flow deflection angle across the
reflected shock wave is reached and a two-shock-wave solution is no longer possible.
The sonic transition criterion suggests that transition occurs when the flow behind the
reflected shock wave becomes sonic, allowing the corner signal, originating from the
initial deflection, to be communicated to the reflection point. This transition mecha-
nism was discussed by Bleakney & Taub (1949) and by Kawamura & Saito (1956)
who both stated that for pseudo-steady flow conditions the sonic and detachment
criteria were not experimentally distinguishable. Lock & Dewey (1989) were able to
experimentally distinguish between the detachment and sonic criteria, and determined
that transition occurred at the sonic point for their set of experiments. The mechanical
equilibrium criterion (which requires a smooth pressure change during transition) has
been observed to apply to some steady flows, but in the domain of low Mach number
pseudo-steady flows in air, the mechanical equilibrium has no solution.

1.1. The persistence of regular reflection

Significant experimental research was performed on shock wave reflections during
World War II, particularly at Princeton University. L. G. Smith (1945), at the sug-
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gestion of von Neumann, performed a comprehensive set of shock tube experiments
and produced quantitative data on wave angles and reflection geometries over a
complete range of deflection angles for 1.04 < Ms < 3. Three important conclusion
were reached that have been confirmed by subsequent researchers:

(i) Prior to transition two-shock theory is in remarkable agreement with experi-
mental observation.

(ii) For strong shock waves (≈Ms > 1.5) three-shock theory shows reasonable
agreement with experiments. However three-shock theory fails badly in the weak
shock wave domain.

(iii) Persistence of regular reflection, well past the theoretical maximum limits, is
consistently observed in experiments.
L. G. Smith (1945) suggested that a possible source of the discrepancy was the fact
that the waves might be significantly curved in the region of the triple point and
that the optical system used did not have sufficient resolution to confirm this. These
inconsistencies in three-shock theory and the persistence of regular reflection have
become known collectively as the ‘von Neumann paradox’. Bleakney & Taub (1949)
confirmed the observations by re-measuring the results of L. G. Smith (1945) and by
performing additional experiments wherein transition was inferred, for a given Ms,
by measuring the triple-point trajectory angle and extrapolating to zero. Bleakney &
Taub (1949) raised the possibility that thermal and viscous effects caused the von
Neumann paradox, but concluded that they probably did not play an important
role, as borne out by the remarkable success of two-shock theory prior to transition.
Bleakney & Taub (1949) stated that the probable cause of the discrepancies was the
existence of variations in density in the domains bounded by the assumed planar
waves, although they could not observe these in their experiments. The persistence of
regular reflection implies, in the steady frame of analysis, that there exists flow into
the wall and that the conservation laws are violated, and thus has been the focus of
significant investigation.

1.2. Reasons for the persistence of regular reflection

The primary reason why viscous and thermal boundary layers were not considered as
the cause for persistence of regular reflection was that the boundary layer displacement
thickness was so thin, starting from zero behind the shock wave and building up to
a few microns 1 mm later, under typical test conditions. In a seminal paper Hornung,
Oertel & Sandeman (1979) confirmed that transition to irregular reflection in steady
flows occurred at the mechanical equilibrium condition and that transition in pseudo-
steady flows occurred at the sonic point. They proposed the length scale criterion as
a mechanism that predicted the correct transition point in both steady and pseudo-
steady flows. In addition they also suggested that viscous and thermal boundary
layer phenomena were in fact the cause of the persistence of regular reflection and
they put forward a physical mechanism by which this occurred. Their fundamental
premise was that it was the shape of the boundary layer in the vicinity of the
reflection point and not the height, as this is known to be extremely small, that is
important. Hornung et al. (1979) noticed a viscous effect in the transition to irregular
reflection in the results of Takayama & Sekiguchi (1977) on shock reflection over
a cone. The difference between the observed shock wave inflow angle at transition
(φ1tr) and the theoretical maximum shock wave inflow angle (φ1d), corresponding
to the detachment condition, increased with a decrease in Reynolds number (Re)
as the driver conditions were altered. Hornung et al. (1979) also observed that the
persistence of regular reflection was absent or less pronounced in the internal cavity
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Figure 2. Boundary layer behind a shock wave: (a) laboratory frame;
(b) pseudo-steady frame.

experiments of W. R. Smith (1959) and of Henderson & Lozzi (1975). These internal
cavity experiments were designed to reflect two plane waves into each other, their
plane of symmetry being a perfect inviscid adiabatic boundary. Neither W. R. Smith
nor Henderson & Lozzi associated the lack of regular reflection persistence with the
elimination of the boundary layer at the reflection surface.

Hornung et al. (1979) explained the persistence of regular reflection due to the
boundary layer on the reflecting surface as follows: Figure 2(a) illustrates the velocity
profile of a boundary layer behind a moving shock wave. In order to apply the shock
wave equations to this system a Galilean velocity transform is used to transform
the system to a frame of reference wherein the shock wave is motionless. The shock
wave and resulting boundary layer velocity distribution in this pseudo-steady frame
of reference is illustrated in figure 2(b). It can be seen that in the pseudo-steady frame
of analysis the shock tube wall now has a velocity Vs relative to the shock wave.
This means that the wall velocity Vs is larger than the relative gas velocity Vs − Vg ,
resulting in a negative boundary layer displacement thickness δ∗, that acts as a mass
sink. The pseudo-steady inviscid analogue of the above situation for regular reflection
is illustrated in figure 3. The negative boundary layer displacement thickness in the
viscous case results in a displaced wall in the inviscid analogue. This in turn results in
an offset flow deflection angle ε, which relaxes the requirement for the reflected shock
wave to turn the flow back parallel to the wall, and thus allows for the persistence of
regular reflection past the inviscid theoretical maximum. Hornung et al. (1979) also
proposed a future experiment whereby the Reynolds number be varied at a constant
Mach number to allow the confirmation of this hypothesis. The only anomaly was
that according to their physical reasoning it was expected that the angle between the
reflected shock wave and the wedge (ω′) would decrease; however the opposite was
observed. No explanation for this was offered. This anomaly was not observed in
subsequent work by Shirouzu & Glass (1982).

1.3. The experiment of Hornung & Taylor (1982)

Hornung & Taylor (1982) carried out shock wave reflection experiments, in a free-
piston shock tube, at constant incident shock wave Mach number and velocity, i.e.
constant temperature, while varying the initial shock tube pressure p1. Thus Hornung
& Taylor were able to perform a series of tests at Ms = 5.5 in argon (to avoid
substantial real gas effects) and observe the transition from regular reflection to
double Mach reflection at a variety of Reynolds numbers. For each series of tests the
non-dimensionalized Mach stem height (linear analogue of χ) was plotted versus the
inflow angle φ1 (the angle between the incident shock wave and the approaching flow,
in the pseudo-stationary frame of reference). A line was fitted through these data and
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Figure 3. The negative displacement effect due to the boundary layer – inviscid analogue.

extrapolated to a zero value of the non-dimensionalized Mach stem height, to obtain
the value of φ1 at transition to regular reflection. Four series of tests were performed
at different values of p1 and thus at different Re. These points were extrapolated to
obtain a value of φ1 at transition for an infinite Re. This equated to a zero velocity
boundary layer thickness (δ) (applicable to compressible boundary layer flow over a
flat plate, see Anderson 1991),

δ =
5x√
Re
fn

(
Me,Pr,

Tw

Te

)
, (1.1)

where the subscripts e and w refer to the free-stream and wall conditions respectively,
x is a suitable length scale and M, T and Pr are the Mach number, temperature
and Prandtl number. If the thermal conductivity (k ), specific heat (Cp) and dynamic
viscosity are assumed constant or solely a function of temperature (a perfect gas
under reasonable conditions) then Pr is a function of temperature only and the
boundary layer thickness varies only with Re, when M and T are held constant.
Within Hornung & Taylor’s experimental accuracy, their value of φ1 was identical to
that calculated using the sonic transition criteria, thus indicating that viscous effects
were the cause of the persistence of regular reflection. Shirouzu & Glass (1982) re-
checked existing experiments for viscous dependence and Wheeler (1986) performed
additional experiments by scaling initial pressure. Both these studies illustrated that
the reflection transition had a viscous dependence, but did not provide quantitative
confirmation of the hypothesis of Hornung et al. (1979).

The work of Ben-Dor (1987) amongst others has illustrated the importance of
viscosity in the region of the triple point and slipstream, and how it substantially
affects the shock reflection geometry, see Ben-Dor (1992). The experiment of Hornung
& Taylor (1982) did not isolate the viscous effects at the surface of reflection but
rather inferred the effect of zero viscosity throughout the entire flow field. Assuming
that the displacement effect of the shear layer that issues from the triple point behaves
smoothly, then the extrapolation, performed by Hornung & Taylor (1982), determines
the correct transition point.

It is well known that in the case of the compressible boundary layer behind a moving
shock wave the walls of the shock tube (which are colder than the free gas, especially
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in fairly strong shock waves) act as a mass sink (Thompson 1972, p. 507). Thus it
can be expected that the thermal transport at the reflection wall can also contribute
significantly to the persistence of regular reflection. This was experimentally validated
by van Netten, Dewey & von Haimberger (1994) who, by heating and cooling the re-
flection surface, illustrated that thermal conduction significantly affects the reflection
geometry. Subsequent numerical simulations by Henderson, Crutchfield & Virgona
(1997, p. 32) confirmed this and proved that for certain flow conditions the thermal
transport effect dominates the viscous transport mechanism in causing a significant
delay in eruption of the self-similar nature of the shock reflection. Their numerical
solutions of the Navier–Stokes equations with isothermal slip boundary conditions
demonstrated that thermal effects strongly influence reflection transition even without
the presence of a velocity boundary layer. It is thus instructive to consider both viscous
and thermal effects in the experiments of Hornung & Taylor (1982). By extrapolating
to infinite Re, Hornung & Taylor did in fact reduce the effect of the viscous boundary
layer, while keeping all other variables constant. Since Pr is positive and near unity, in
the limit, the effect of this extrapolation is to reduce the size of the thermal and viscous
boundary layers to zero. However the gas in the experiment remained at a constant
temperature and thus maintained a constant and finite viscosity and thermal conduc-
tivity throughout the extrapolation. One can thus expect that a finite heat transfer,
from the hot gas behind the shock wave to the cool shock tube wall, still exists as Re
approaches infinity. The results of Henderson et al. (1997) are thus understandable,
but the relative contribution of the thermal effects as transition is approached, such
as in the extrapolation process of Hornung & Taylor (1982), are still to be clarified.

The heat transfer from the gas to the shock tube wall can be characterized using
the Nusselt number (Nu), which is the dimensionless temperature gradient at the
wall surface. The relationship between the flow properties and Nu in a compressible
boundary layer behind a moving shock wave is given by Schlichting (1968, pp.
422–426) as

Nu =
√

Rex fn
′
(
Vg

Vs
,Pr

)
=
√

Rex fn
′′
(
Mg

Ms

,Pr,
T2

T1

)
. (1.2)

Here the subscripts 1, 2 refer to the gas properties ahead of and behind the shock
wave respectively, while s and g refer to the shock wave and the gas behind the shock
wave respectively. It can be seen that in the constant Mach number and constant
temperature experiments, performed by Hornung & Taylor (1982), Nu was solely
dependent on Re. As Re approached infinity so Nu also approached infinity. The
relationship between Nu and the heat flux q is given by Schlichting (1968, p. 262) as

q =
k

l
Nu(Tw − Te), (1.3)

where l is an appropriate distance. Equation (1.3) shows that for constant temperature
conditions (and thus constant k ) the heat flux approaches infinity as Nu approaches
infinity. Since persistence of regular reflection was not present in Hornung & Tay-
lor’s experiments, this suggests that these thermal effects do not significantly affect
transition under their experimental conditions (i.e. thermal boundary layer thickness
approaching zero).

1.4. Other experiments

W. R. Smith (1959) conducted a series of internal cavity experiments at Ms = 1.04,
wherein a V-shaped test section was added to the end of a shock tube which was
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Figure 4. W. R. Smith’s cavity experiment arrangement.

so angled as to reflect the planar incident wave towards the centre from both walls,
see figure 4. Thus the two reflected waves reflect off each other at the centre of the
test section, their plane of symmetry acting as an ideal adiabatic inviscid surface
of reflection. W. R. Smith (1959) observed that transition from regular to irregular
reflection occurred at approximately the detachment point. Smith did not attribute
this to the absence of transport phenomena but to more precise optical determination
of the reflection transition, due to the absence of a physical boundary in the vicinity of
the reflection point. Smith based his observation of the lack of persistence of regular
reflection by extrapolating measured values of χ to zero; however re-examination of
his experimental results throws doubts on his conclusion that persistence of regular
reflection did not occur. Smith’s curve fit through his data did not represent a
statistical best fit curve, but rather a combination of a straight line and an arc.
A curve fit through all Smith’s data with χ values of greater than 0.2 indicates a
definite persistence of regular reflection of greater than 2◦ (φ1 + χ). The data points
which led him to observe experimental transition at the theoretically determined
point were all for χ values of the order of 0.1◦. Smith’s data set in this range had
significant experimental scatter, in some cases greater than 300%. In addition the
interferograms of the mutual reflection of equal strength shocks published by Smith
(1959, figure 4) were clearly non-symmetrical. Smith (1959) and subsequent researchers
such as Henderson & Lozzi (1975) and Virgona (1993) experienced several problems in
obtaining accurate measurements using the internal cavity apparatus. These difficulties
can be summarized as follows:

It is difficult to measure the strength of the reflected shock waves accurately. In
addition the interaction of the reflected shock wave with the wall boundary layer
causes lambda-type shocks, which are very thick and make accurate measurements
of wave angles near transition impossible, see Virgona (1993). Also the presence of
corner signals, see figure 4(b), severely limits the length of test time for which the
reflected waves are planar. This means that in many experiments the data are obtained
from very small Mach stem reflections, and thus have large errors.

Skews (1995) suggested that if it was possible to generate two separate plane waves
that reflected off each other at the trailing edge of a wedge, see figure 5, then their
plane of symmetry would act as an ideal, inviscid adiabatic, reflecting surface. Skews
achieved this by using a bifurcated shock tube, shown in figure 6, wherein a plane
shock wave is split by a splitter into two plane waves which then travel down separate



270 F. J. Barbosa and B. W. Skews

Succesive incident shock positions

Mach stem

Reflected shock

χ

Figure 5. Mutual reflection at the trailing edge of a wedge.

channels. These channels were bent in such a way as to bring the two shock waves
together to interact at the trailing edge of a wedge. This bifurcated shock tube was
able to generate synchronized shock waves in 20% of tests and indicated strongly
that the persistence of regular reflection was indeed caused by transport mechanisms
on the reflection surface, as hypothesized by Hornung et al. (1979). The purpose of
this paper is to report on further bifurcated shock tube experiments, using a much
larger facility that was able to produce high quality flow fields, that further tests the
above hypothesis.

2. Experiment
2.1. The bifurcated shock tube

A series of experiments were performed in a bifurcated shock tube with a wedge
angle of 80◦ (corresponding to a deflection angle of 40◦). The test gas was air, with
the driven gas being at ambient pressure and temperature. A double-diaphragm
shock tube driver was used to generate a plane shock wave. The shock wave is split
into two by the splitter which is a V-shaped machined channel with an angle of
80◦ between the two legs. The distance between the diaphragm and the splitter was
1.2 m (equivalent to 27 pipe diameters). Once the wave is split it enters a straight
section followed by a long rolled section with an arc angle the same as that between
the bifurcated legs. These sections were made from commercial tubing with internal
dimensions of 44 mm high by 94 mm wide, rolled to a 3 m radius. The final straight
section of the tube, which was 18 pipe diameters long, was accurately machined
to match the test-section. The test-section, splitter and straightening sections were
manufactured from mild steel blocks, using a numerically controlled milling machine,
and the internal areas were polished smooth. Synchronization was adjusted by adding
spacer sections to one of the curved legs. Due to the size of the shock tube (total
length of 11 m) it was necessary to enclose the top and bottom curved legs within an
enclosed loop made from insulated air-conditioning ducting. A small fan circulated
the air within the duct to ensure that the ambient temperature was the same in both
legs. Holographic interferograms showed that the bifurcated shock tube generated a
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Figure 6. B. W. Skews’ bifurcated shock tube geometry.

high quality uniform flow field. In all cases the difference in Mach number between
the two incident shock waves was well below 0.2%.

2.2. Flow visualization and measurement

Contact shadowgraphs were obtained using a 30 ns pulsed ruby laser, aligned perpen-
dicular to the test-section to within 0.05◦. The images were recorded on 4 in.× 5 in.
AGFA 10E75 holographic emulsion which was sandwiched against the rear test-
section window. This emulsion has a resolution of 2800 lines/mm and was developed
for 2 minutes using AGFA GP61 high-contrast developer. Contact shadowgraphs are
very accurate since they have a magnification of unity and do not use any optics
downstream of the test section. The shadowgraphs were scanned at 600 dots per inch
using a high accuracy linear scanner with an error in aspect ratio of only 0.45%. This
error was compensated for by stretching the images using bi-cubic resampling which
stretches the image without degrading the quality. All scanned images were imported
into a professional computer aided drawing package and measured electronically to
an accuracy of 1 pixel. Sensitivity analyses were performed for each measurement,
the results of which are given in the following section.

3. Results and discussion
Figures 7 and 8 show typical shadowgraphs obtained. The mis-synchronization

between the two incident shock waves is given by δt which corresponds to the time
difference between the arrival of the two shock waves at the wedge apex in the
test-section. The corresponding mis-synchronization distance between the two waves
is δx, i.e. the distance the early wave would be past the corner when the late wave is
at the corner.

Tests with a mis-synchronization value of δx 6 1 mm were assumed to be perfectly
synchronized, since this value is the same order of magnitude as the visualized shock
wave thickness. Table 1 is a summary of the experimental results for the synchronized
tests. The angles ωir and ωrs refer to the angle between the incident and reflected
waves and the angle between the reflected wave and the slipstream respectively,
while ∆Ms and ∆χ are the maximum experimental uncertainties for Ms and χ. The
angles φ1, ωir and ωrs have a uncertainty of approximately ±1.6◦. These reflection
angles are difficult to determine accurately since the reflected and Mach shocks and
slipstream can possess substantial curvature in the vicinity of the triple point, and
thus all measurements are constrained by optical resolution limits. These angles can
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Figure 7. Shadowgraph for Ms = 1.26, δt = 2.3 µs.

Figure 8. Shadowgraph for Ms = 1.33, δt = 1.4 µs.

be measured twice on each shadowgraph, due to the symmetry of the reflection, and
thus the uncertainty was assumed to be equal to twice the average standard deviation
of each reflection angle, throughout the series of synchronized tests.

3.1. The extrapolated Ms versus χ curve

Figure 9 shows the experimental Ms versus χ data along with a second-order least-
squares curve fit through the data points. A second-order polynomial curve fit was
found to be the most appropriate, producing an extremely accurate fit with a coefficient
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Ms ∆Ms χ (deg.) ∆χ (deg.) φ1 (deg.) ωir (deg.) ωrs (deg.) δx (mm)

1.34 0.0030 1.64 0.07 50.3 71.0 61.7 0.05
1.33 0.0045 1.57 0.07 50.2 72.0 61.4 0.65
1.31 0.0035 1.39 0.06 50.3 71.6 61.2 0.22
1.26 0.0019 0.91 0.07 50.1 66.1 65.4 1.00
1.25 0.0032 0.85 0.07 50.1 65.5 65.2 0.03
1.20 0.0027 0.49 0.06 49.9 64.8 65.5 0.89
1.17 0.0020 0.20 0.12 50.2 – – 0.94

Table 1. Synchronized (bifurcated shock tube) shock wave experiment results: θw = 40◦.
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Figure 9. Experimental Ms versus χ curve, θw = 40◦: ——, quadratic best fit curve;
©, experimental points; +, error bars.

of determination of r2 = 99.93% and Ms residuals of the order of 10−3. Numerous
researchers, such as Henderson et al. (1997), have also found that the triple-point
trajectory angle curve can be modelled well by a second-order polynomial and that
significant curvature does not occur as transition is approached. The detachment
(Ms = 1.135) and sonic (Ms = 1.128) theoretical transition points as well as the 95%
statistical confidence limits (which are a function of the standard deviation and the
position of the extrapolated point from the mean of the experimental data and from
the experimental points themselves) are also indicated on figure 9. The resulting
extrapolation gives a value of Ms = 1.144± 0.007 for the ideal transition point. This
is essentially the same as the detachment point, within the experimental accuracy
of ∆Ms = ±0.01, thus indicating that the persistence of regular reflection is indeed
due to transport effects on the surface of reflection. However within the extremely
narrow 95% confidence limits the experimentally determined value is slightly larger
than the theoretical transition values. A linear best fit line through the same data
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Ms χ (deg.) φ1 (deg.) ωir (deg.) ωrs (deg.)

1.233 0.49 49.1 63.6 68.0
1.238 0.58 49.4 65.0 66.6
1.243 0.61 49.4 64.3 66.5
1.262 0.75 49.2 63.7 68.2
1.345 1.47 48.3 71.1 63.4
1.367 1.51 48.6 67.1 67.2
1.374 1.63 47.9 71.4 64.6
1.386 1.85 48.2 70.6 65.7
1.406 1.81 48.6 71.4 64.5
1.430 2.09 47.8 73.6 63.5
1.445 2.16 47.7 73.9 63.2

Table 2. Results of the 40◦ conventional wedge reflection tests.

produces essentially the same results (within 1%), but with the transition point being
Ms = 1.150± 0.008.

In order to compare this ideal reflection surface data with conventional wedge
reflection tests a second series of tests in a conventional linear shock tube were
performed. This shock tube has an automated double-diaphragm driver that is
capable of generating high quality reproducible planar shock waves. A 40◦ wedge
was manufactured out of mild steel and was polished to provide a smooth reflection
surface. The wedge spanned the entire shock tube test section and the leading edge
was raised substantially from the shock tube floor to eliminate any floor boundary
layer effects. Contact shadowgraphs were again used to obtain the images; however a
pulsed xenon white light source with a duration of about 1µs was used. The images
were recorded on standard 100 ASA emulsion. The results of these wedge reflection
tests are given in table 2. A second-order polynomial was fitted through this data
using least-squares regression and the transition Mach number was determined to
be Ms = 1.171± 0.032. Even with the large 95% confidence bounds the theoretical
transition points still lie outside the predictions of this experiment, thus confirming
the persistence of regular reflection in conventional wedge reflection tests as observed
by all previous researchers.

3.2. The effect of mis-synchronization: a multivariate analysis

In order to be conclusive it is instructive to consider the effects of mis-synchronization
(non-zero δx) on the bifurcated shock tube (ideal surface) experiments. Figure 7
illustrates the test which had the worst synchronization (δx = 1 mm) in the series of
‘synchronized’ tests. A very small circular vortex can be observed just downstream
of the wedge apex. The two slipstreams emanating from the two triple points both
terminate in this circular vortex. A small asymmetry can be observed due to the
mis-synchronization.

Figure 10 is an exaggerated illustration of the shock wave interaction process in
the case of mis-synchronized incident shock waves. The initial interaction is shown
in figure 10(a) and can be explained as follows: The upper shock wave arrives first
and sheds a vortex as it diffracts around the wedge apex. The later arriving lower
shock wave undergoes an extremely weak shock–vortex interaction (which deforms
the shock wave in the region of the vortex) and then relaxes back into a planar shock
wave, see Ellzey et al. (1995). At point (1) the two shock waves, which are now of
equal strength, interact for the first time as two planar shock waves reflecting off each
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Figure 10. An exaggerated schematic of the mis-synchronized case. (a) Initial interaction.
(b) Interaction at a later stage.

other. The conventional Mach reflection geometry evolves from this point onwards.
Figure 10(b) shows the interaction process at a later time. It can be seen that almost
the same reflection process has been generated from the slightly mis-synchronized case
as would have been generated from the ideal synchronized case. The one exception is
that the Mach reflection pattern has been displaced slightly downwards by a distance
y′, which would be expected to generate a form of parallax error in the measurement
of χ angle data.

The triple-point trajectory angle is determined by calculating the arc-tangent of
the Mach stem half-height y, divided by x, the distance from the wedge apex (point
(2) in figure 10b) to the midpoint of the Mach stem (point (3)). In the perfectly
synchronized case, point (2) is the correct location of the initial shock wave reflection.
However in the slightly mis-synchronized case point (1) (figure 10a) is the correct
location of the initial shock wave interaction point. Thus in the mis-synchronized
case, x will always be measured as slightly larger than its real value and the angle χ
will be consistently larger than the value calculated. Thus it would be expected (if only
perfectly synchronized tests were obtained) that the Ms versus χ curve (figure 9) would
shift to the right causing the transition Mach number to be lower than that which was
determined. This means that the true value would be even closer to the theoretical
transition Mach number than that which was obtained. The logical measurement
of relative mis-synchronization is the non-dimensional value δx/x. Here δx is the
mis-synchronized distance between the two incident shocks, as previously defined.
This non-dimensional value is multiplied by a factor of 100, to obtain a percentage
mis-synchronization, and will be referred to as ψ.

Table 3 lists the Ms, χ and ψ values for the seven synchronized tests and for a further
six slightly mis-synchronized (ψ 6 20) tests. A nonlinear least-squares multivariate
regression analysis was performed and it was found that a two-dimensional quadratic
function between Ms, χ and ψ best approximated these 13 data points. The resulting
three-dimensional surface is specified by

Ms = 1.135 + 0.143χ− 0.011χ2 + 0.0014ψ + 0.00007ψ2. (3.1)

Once again the resulting regression fit is extremely accurate, with allMs residuals being
smaller than 0.005. To obtain the transition value at perfect synchronization both χ
and ψ are set to zero in (3.1); additionally the 95% confidence limits were calculated
as before, resulting in a transition value of Ms = 1.135± 0.01, which is identical to the
theoretical detachment transition point. The theoretical sonic transition point is also
well within the confidence bounds. A linear (three-dimensional plane) regression fit
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Ms χ (deg.) ψ

1.17 0.20 4.44
1.20 0.49 2.24
1.25 0.85 0.09
1.26 0.91 2.72
1.26 0.93 3.14
1.31 1.24 8.09
1.31 1.29 6.63
1.31 1.39 0.55
1.33 1.57 1.81
1.34 1.52 4.24
1.34 1.64 0.14
1.35 1.28 17.50
1.35 1.31 16.10

Table 3. Results of all bifurcated shock tube tests with ψ 6 20.

through these data produces essentially the same result with less than a 1% difference
in transition which is predicted to occur at Ms = 1.139± 0.01.

Figure 11 is a comparison between the conventional wedge reflection tests and the
results of the multivariate analysis (equation (3.1)) on the bifurcated shock tube data.
This figure unambiguously shows that the hypothesis of Hornung et al. (1979), that
persistence of regular reflection is solely due to transport effects at the surface of
reflection, is in fact true. It must be re-emphasized that the regression fit through the
bifurcated shock tube data in figure 11 is actually a three-dimensional curve with the
value of ψ set to zero (perfect synchronization) and with the ψ-axis suppressed. In
addition, although the data points that were assumed to be synchronized (δx 6 1 mm)
are superimposed on the plot, they are not the only data points that were used in
the respective regression analyses. The full range of data points given in table 3 were
used to perform the regression analyses. It is instructive to note the effect of the
test at Ms = 1.17 on the regressed curve: the measured value of χ for this test case
was 0.2◦ which is significantly smaller than the next smallest χ value of 0.49◦. As a
consequence of the small value of χ this test has very large horizontal error bars as
can be seen in figure 9. The question arises of the veracity of using a point with such
large uncertainty. It is possible that this point could artificially induce the curvature
in the regressed polynomial to force it to attain the theoretical transition value. To
verify whether this does indeed occur another multivariate regression analysis was
performed with this point left out of the data set. The result of this analysis, that
transition occurs at Ms = 1.131± 0.025, is essentially the same as the previous case.
This experimental transition point lies exactly in between the theoretical transition
points determined using the detachment and sonic criteria, with both points lying
well inside the 95% confidence limits again. This confirms the fact that the three-
dimensional quadratic function models the experimental data extremely accurately
and that there is no large change in curvature rate as χ approaches zero.

3.3. Comparison of reflection angles with theoretical predictions

As observed by Hornung & Taylor (1982), and in contradiction to the findings of
Shirouzu & Glass (1982), the angle between the reflected shock wave and the surface
of reflection (ω′) was larger in the viscous case than in the inviscid case, which was
contrary to what is expected from the physical arguments of Hornung & Taylor
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Figure 11. Comparison between conventional wedge tests (�) and the bifurcated shock tube
(adiabatic, slip) experimental Ms versus χ and ψ surface: ψ = 0 and ψ-axis suppressed, θw = 40◦:
——, quadratic best fit curve (at ψ = 0) with 95% confidence bounds; ©, assumed synchronized
experimental points (δx 6 1 mm) – remaining 6 data points not shown.

(1982) since in the viscous case the reflected shock wave does not have to deflect
the flow as much, due to the negative displacement effect of the boundary layer.
The difference in ω′ is approximately 2◦ and increases slightly with Ms. Comparisons
of the reflection angles χ, ωrs and ωir obtained in the conventional wedge reflection
tests and the bifurcated tests with theoretical predictions are shown in figures 12,
13 and 14. The theoretical predictions shown are those obtained using three-shock
theory, modified three-shock theory (values of χ prescribed using experimental values,
and the requirement that the flow on either side of the slipstream is parallel relaxed)
and the theory proposed by Sandeman (2000). The modified three-shock theory is
seen to be inaccurate in all cases and breaks down at Ms ≈ 1.3, when φ2 reaches 90◦
and the pressures across the slipstream are no longer matched. Although Sandeman’s
theoretical predictions are more accurate than three-shock theory, in most instances,
significant deviations from theory still exist for some reflection angles when compared
to the bifurcated shock tube experiments. Thus the broader ‘von Neumann paradox’
(especially at weak Mach numbers) still exists.

3.4. Possible physical causes of discrepancies

Although the bifurcated shock tube results prove conclusively that persistence of
regular reflection is solely due to transport effects on the reflection surface, figures 13
and 14 show that the removal of the viscous and thermal boundary layer on the
wedge surface actually increases the wave angle discrepancies between von Neumann
three-shock theory and experiment. This clearly indicates that the overall influence of
transport properties on the reflection process is more complex than outlined in the
arguments put forward by Hornung et al. (1979). The angles ω′ and ωir behave in a
counter-intuitive way: for a set incident shock strength and flow deflection (wedge)
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angle the orientation and the strength of the incident shock wave is fixed and thus
φ1, the shock inflow angle (see figure 15), is constant. The incident shock wave flow
deflection angle θ1 is thus also a constant and can be calculated using the oblique
shock relations. In an inviscid calculation the orientation and strength of the regular
reflection is determined by the boundary condition that the flow must be turned back
parallel to the wedge. The reflected shock wave obtained is always observed to be of
the weak branch of the shock deflection polar and thus the relationship between the
shock inflow angle (φ2) and the shock flow deflection angle (θ2) across the reflected
wave is in positive proportion, John (1984). This means that as φ2 increases so does
θ2 and vice versa. For the case of a viscous wedge the negative boundary layer
displacement argument (Hornung et al. 1979) predicts that the effective angle of the
surface of reflection is increased directly behind the point of reflection. This results
in a lowering of the reflected shock wave flow deflection angle θ2. This decrease in
θ2 must be accompanied by a resultant decrease in the reflected shock wave inflow
angle φ2, since this shock lies on the weak branch of the shock deflection polar. To
accommodate this decrease in φ2 the reflected shock must rotate about the reflection
point anti-clockwise. Thus it would be expected that the angle between the incident
and reflected shock wave ωir would be larger in the wedge experiments (viscous) than
in the bifurcated experiments (adiabatic slip). The opposite is observed as can be seen
in figure 14.

It must be remembered that the bifurcated shock tube experiments are in gas
of finite viscosity and thermal conductivity and that it is only along the surface
of reflection that these effects are unimportant since there are no velocity and
temperature gradients there. It is thus necessary to consider the influence that the
slipstream (S), see figure 15, has on the overall reflection geometry. Ben-Dor (1987)
considered the effects of finite viscosity on the slipstream and determined that these
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Figure 15. Schematic of Mach reflection – three-shock notation.

effects were in fact of major significance in altering the reflection angles. The flow
velocity behind the reflected wave is higher than that behind the Mach stem, thus a
momentum exchange occurs between these two regions.

Considering the effect of the adiabatic slip reflection surface boundary condition
on a typical Mach reflection system (figure 15) one is able to obtain some pointers as
to how this boundary condition can influence the orientation of the reflected shock
wave. Dewey & McMillin (1985) showed that viscosity on the wedge surface prevents
the Mach stem from being perpendicular to the wedge. However in the bifurcated
tube experiments the Mach stem has to be perpendicular to the wedge since the flow
in front of the Mach stem is initially parallel to the reflection surface and it must
remain so in the absence of transport effects along the wedge. The Mach stem cannot
however remain perfectly straight throughout its length since the deflection of the
streamline that passes through the triple point is non-zero. Although the Mach stem
is not seen to be curved, it must possess a gentle curvature as it approaches the triple
point. Thus the boundary condition along the wedge affects the curvature of, and
the resultant flow behind, the Mach stem. The gas velocity, in the region between the
slipstream and the reflected shock wave (in the domain of these experiments) and in
the triangular region bounded by the wedge, the slipstream and the Mach stem, is
subsonic relative to the triple point. Thus a disturbance in either of these two regions
is always communicated to the triple point. Additionally the gas in these two regions
is strongly coupled by the thermal energy and momentum interchange across the
slipstream – which increases on moving away from the triple point as the slipstream
thickens (this can even eventually break down into a vortex street).

Using these simple physical arguments it is easy to see how changes in the wall
boundary condition can dramatically affect the size, shape and flow properties of
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the triangular patch behind the Mach stem. This in turn alters the orientation
and properties of the slipstream which in turn has been shown by Ben-Dor (1987) to
strongly affect the reflection wave angles surrounding the triple point. This explanation
in terms of Mach reflection geometry shows that the effects of wedge boundary
conditions are more complex and coupled than the simplified regular reflection
arguments of Hornung et al. (1979). This outcome is natural since the flow discussed
in Hornung et al.’s experiment was a globally inviscid one, while the bifurcated shock
tube flow is much more complex with strong viscosity and thermal effects along the
slipstream but none of these effects along the reflecting surface.

4. Conclusion
The bifurcated shock tube experiments have successfully provided further conclusive

proof that the persistence of regular reflection is solely due to transport phenomena
at the surface of reflection. The behaviour of the wave angles ωir , ωrs and ω′ is
counter-intuitive and although a plausible physical explanation has been suggested,
a full understanding of this phenomena would require high resolution Navier–Stokes
numerical simulations. None of the three theoretical models used are totally successful
in the weak Mach reflection domain of this experiment.
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angles at our test conditions using his theory on shock wave reflections and for
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